Russian Journal of Organic Chemistry, Vol. 40, No. 4, 2004, pp. 601–602. Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 4, 2004, pp. 627–628. Original Russian Text Copyright © 2004 by Petko, Yagupol'skii.

> SHORT COMMUNICATIONS

Difluoromethylation of 5-Sulfanyltetrazoles

K. I. Petko and L. M. Yagupol'skii

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02094 Ukraine e-mail: Lev@fluor-ukr.kiev.ua

Received June 19, 2003

We previously [1, 2] studied difluoromethylation of some 2-sulfanylazoles which are heterocyclic compounds having an N–C–S ambident nucleophilic center. However, we failed to obtain N-difluoromethyl derivatives from 1-aryl-2-sulfanylimidazoles despite wide variation of the reaction conditions. In the reaction with 1-aryl-2-sulfanyl-1,3,4-triazoles, in which the heteroring is a stronger electron acceptor than imidazole ring, the corresponding N⁴–CHF₂ derivatives were isolated in up to 25% yield [2].

The present communication reports on difluoromethylation of 1-aryl-5-sulfanyltetrazoles **Ia–Ie** which possess even more acceptor heteroring. By reaction of compounds **Ia–Ie** with chlorodifluoromethane and KOH in DMF at 100–120°C we obtained the corresponding N-difluoromethyl derivatives **IIa–IIe** in 60– 80% yield. When the reaction was carried out under milder conditions, in a solution of potassium hydroxide in aqueous dioxane at 20–25°C (reaction time 20 min), the products were S-difluoromethyl derivatives **IIIa–IIIe** (yield 60–80%; see table).

Presumably, increase in the electron-acceptor power of the heteroring makes the C–F bond in the N–CHF₂ group stronger, so that the products are more stable under conditions of alkaline hydrolysis. Difluoromethylation of 2-sulfanylazoles with CHClF₂ under drastic alkaline conditions involves concurrent transfer of the difluoromethyl group from sulfur to nitrogen and vice versa [1]. In the reaction with 1-aryl-5sulfanyltetrazoles, the equilibrium is displaced toward more stable N-difluoromethyl derivatives.

The ¹H and ¹⁹F NMR spectra were recorded from solutions in CDCl₃ on a Varian VXR-300 spectrometer at 300 and 282.2 MHz, respectively, using TMS (¹H) and CFCl₃ (¹⁹F) as internal references.

1-Aryl-4-difluoromethyltetrazole-5-thiones IIa– IIe. A solution of 0.01 mol of tetrazole **Ia–Ie** in 10 ml of distilled DMF was saturated with chlorodifluoromethane at room temperature, and 6 g of finely powdered KOH was added under vigorous stirring. The mixture strongly warmed up. Passing of CHClF₂ was continued until it no longer absorbed at 100– 120°C (for about 20 min). The mixture was poured into 100 ml of water, and the precipitate was filtered off, dried in air, and recrystallized from CCl₄–hexane (2:1). Yield of **IIa–IIe** 40–60%. The mother liquor was subjected to chromatography to isolate an additional amount (~20%) of product **IIa–IIe** and a small amount (5–10%) of isomer **IIIa–IIIe**.

1-Aryl-5-difluoromethylsulfanyltetrazoles IIIa– IIIe. A mixture of 5 ml of dioxane (freed from peroxy compounds) and a solution of 6 g of potassium hydroxide in 10 ml of water was saturated with chlorodifluoromethane under stirring, 0.01 mol of 5-sulfanyltetrazole **Ia–Ie** was added, and passing of CHClF₂ was continued for 20 min under stirring. The mixture was diluted with 100 ml of water, and the oily material was extracted into diethyl ether (3×30 ml). The combined extracts were washed with water (3×50 ml), dried over

 $Ar = C_{6}H_{5}(\mathbf{a}), 2-MeC_{6}H_{4}(\mathbf{b}), 4-MeC_{6}H_{4}(\mathbf{c}), 2, 4-Me_{2}C_{6}H_{3}(\mathbf{d}), 2, 5-Me_{2}C_{6}H_{3}(\mathbf{e}).$

1070-4280/04/4004-0601 © 2004 MAIK "Nauka/Interperiodica"

PETKO, YAGUPOL'SKII

Comp.	Yield,	mp, °C, or bp,	Found, %			Formula	Calculated, %			NMR spectra		
no.	%	°C (<i>p</i> , mm)	С	Н	N	Formula	С	Н	N	$\delta(C\mathbf{H}F_2)$	$\delta_F(CHF_2)$	$J_{\rm HF},{ m Hz}$
IIa	83	93–94	41.96	2.56	24.37	$C_8H_6F_2N_4S$	42.10	2.65	24.55	7.96 t	-103.88 d	57
IIb	87	56–57	44.64	3.12	23.41	$C_9H_8F_2N_4S$	44.62	3.33	23.13	7.94 t	–103.36 d	57
IIc	68	126–127	44.92	3.01	23.22	$C_9H_8F_2N_4S$	44.62	3.33	23.13	8.00 t	–103.74 d	57
IId	70	75–76	47.15	4.05	21.72	$C_{10}H_{10}F_{2}N_{4}S$	46.87	3.93	21.86	8.07 t	-103.38 d	57
IIe	72	115–116	46.81	3.72	21.91	$C_{10}H_{10}F_{2}N_{4}S$	46.87	3.93	21.86	7.92 t	-103.40 d	57
IIIa	81	117–120 (0.5)	42.13	2.44	24.78	$C_8H_6F_2N_4S$	42.10	2.65	24.55	7.64 t	-92.39 d	56
IIIb	62	125–127 (0.3)	44.55	3.52	23.18	$C_9H_8F_2N_4S$	44.62	3.33	23.13	7.70 t	-92.64 d	56
IIIc	69	120–122 (0.3)	44.30	3.28	23.07	$C_9H_8F_2N_4S$	44.62	3.33	23.13	7.71 t	-92.69 d	56
IIId	68	136–136 (0.5)	46.69	3.60	22.13	$C_{10}H_{10}F_{2}N_{4}S$	46.87	3.93	21.86	7.64 t	-92.41 d	56
IIIe	67	125-127 (0.3)	46.98	3.81	22.04	$C_{10}H_{10}F_{2}N_{4}S$	46.87	3.93	21.86	7.66 t	-92.43 d	56

Yields, melting or boiling points, elemental analyses, and ¹H and ¹⁹F NMR parameters of compounds IIa–IIe and IIIa–IIIe

magnesium sulfate, and evaporated, and the residue was distilled under reduced pressure.

The yields, melting or boiling points, elemental analyses, and some NMR spectral parameters of compounds **Ha–He** and **HHa–He** are given in table.

REFERENCES

- 1. Petko, K.I. and Yagupolskii, L.M., J. Fluorine Chem., 2001, vol. 109, p. 211.
- 2. Petko, K.I., Ukr. Khim. Zh., 2002, vol. 68, p. 115.